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Virtual source for rotational symmetric
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The virtual source for generation of rotational symmetric Lorentz-Gaussian (RLG) wave whose propagat-
ing dynamics present the rotational symmetry is identified. Closed-form expressions, including integral
and differential representations, are derived for this kind of Lorentz-Gaussian (LG) wave, thereby yielding
paraxial approximation of the RLG beam in the appropriate regime. From the spectral representation of
this wave, the first three order corrections of nonparaxial approximations are determined for a correspond-
ing paraxial RLG beam. Moreover, the relationship between the RLG beam and the Hermite-Gaussian
beam is revealed.
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The Lorentz-Gaussian (LG) beams obtained by Gawhary
et al. as exact solutions of a paraxial wave equation for
propagation in optical systems can be described as the
product of two independent Lorentz functions apodizated
by Gaussian beams and as solution modes in novel laser
resonators[1,2]. These beams have been introduced to de-
scribe highly divergent beams generated by certain laser
sources, such as double-heterojunction Ga1−xAlxAs[3−5].
Thus far, previous work on this type of beam has at-
tracted intensive research and has extended the parax-
ial regime to the nonparaxial regime[6−12]. For exam-
ple, based on the vectorial Rayleigh-Sommerfeld integral
formula, the analytical propagation equation of a non-
paraxial LG beam in free space has been derived[7]. The
rotational symmetric LG (RLG) beam with symmetric
characteristics of rotation, which can be regarded as a
special mathematical model of LG beam, has not yet re-
ceived much attention.

Because the nonparaxial propagation of optical beams
has attracted increasing attention in optics[13], virtual
source method, which is first proposed by Deschamps[14]
and then systematically developed by Felsen et al.[15,16],
has been widely applied to investigate the characteriza-
tion and propagation of beams in and beyond the parax-
ial regime. Seshadri[17−20] employed this method to de-
rive an integral expression for Bessel-Gaussian, cylindri-
cally symmetric elegant Laguerre-Gaussian, fundamental
Gaussian[21], and elegant Hermite-Gaussian beams. Ban-
dres et al. applied this method to determine a higher-
order complex source of elegant Laguerre-Gaussian wave
with angular mode number m and radial mode number
n[22]. Zhang et al. extended this method to generate a
cosh-Gaussian wave with four complex virtual sources[23],
whereas Deng et al. derived a higher-order complex vir-
tual source for the elegant Hermite-Laguerre-Gaussian
wave[24]. Based on the operator transformation tech-
nique, the multiple complex point sources required to
generate a coherent superposition of waves have also been

introduced[25]. A group of virtual sources that generate
a hollow Gaussian wave based on the superposition of
beams has been generated[26]. However, to the best of
our knowledge, the virtual source of the RLG beam has
not been investigated. The exact solution of the RLG
wave, including integral and differential representations,
has also not been reported.

In this letter, based on the superposition of beams, a
virtual source for the RLG wave (ω0 =

√
2ω0x =

√
2ω0y)

is studied. The expression of exact solution is obtained
for this wave. From this expression, the paraxial approx-
imation and nonparaxial corrections of all orders can be
determined for this RLG beam.

Suppose LG(x, y, z) to be a monochromatic paraxial
scalar wave function that denotes a paraxial LG wave
propagating along the positive z axis. The ordinary LG
field at the original plane (z = 0) is characterized by

LG(x, y, 0) =
A

ω0xω0y

1
[1 + (x/xω0x)2]

1
[1 + (y/ω0y)2]

· exp
(
−x2 + y2

ω2
0

)
, (1)

where ω0j (j = x, y) and ω0 are parameters related to the
beam width and A is a constant value. Here, A, ω0x, ω0y,
and ω0 ∈ <. The Lorentz distribution has been expanded
in terms of the elements of the complete orthonormal ba-
sis set of the Hermite-Gaussian functions[27]. The expan-
sion is given by[27−29]

LG(x, y, 0) =
Aπ

2ω0xω0y

∞∑
m=0

∞∑
n=0

a2ma2nH2m(x/ω0x)

·H2n(y/ω0y) exp
[
− x2

ω2
x

− y2

ω2
y

]
, (2)

1/ω2
j = 1ω2

0 + 1/2ω2
0j , (3)

1671-7694/2012/062601(5) 062601-1 c© 2012 Chinese Optics Letters



COL 10(6), 062601(2012) CHINESE OPTICS LETTERS June 10, 2012

where a2m and a2n are adjustable functions with ad-
justable parameters that are used to obtain reasonably
convergent results, especially when only a limited num-
ber of terms is used in the expansion, and H2m and H2n

are Hermite polynomials of even order. The values of
a2m and a2n are listed in Ref. [27]. Supposing that
ω0j = ωj = ω, we obtain the waist of the Gaussian part
ω0 =

√
2ω in Eq. (1). We adopt the same beam widths of

the Lorentz part in the x and y directions. The Lorentz
part is modulated by Gaussian part with the appropriate
waist, leading to the RLG beam, which presents a nearly
round spot in original plane. After applying the beam
width relation, the expansion equation of LG beams on
basis of Hermite-Gaussian functions (Eq. (2)) can be
rewritten as the RLG beams:

RLG(x, y, 0) =
Aπ

2ω2

∞∑
m=0

∞∑
n=0

a2ma2nH2m

(x

ω

)
H2n

( y

ω

)

· exp
[
−x2 + y2

ω2

]
. (4)

Equation (4) stands for LG beam with rotational sym-
metry, which presents a nearly round spot in the origi-
nal plane. That is to say, the RLG beams present the
symmetric characteristic in original plane, and can be
obtained by means of the superposition of even-order
Hermite-Gaussian beams.

We display the propagation dynamics of the RLG wave
in free space by means of the Fresnel diffraction method
in Fig. 1. The chosen planes are z = 0.5zR, zR, and
2zR, where zR stands for the Rayleigh distance. Normal-
ized intensity distributions at the chosen planes for the
approximated version of RLG wave are also plotted in
Fig. 1 for comparison. Clearly, the RLG wave presents a
prominent symmetrical characteristic different from the
ordinary LG wave. Moreover, Figs. 1(a) and (d) show
that the intensity distribution of the RLG beam is the
same as that of its approximated version at the z = 0.5zR

plane. Figures 1(b) and (e) also present the intensity
distribution of these two beams at the z = zR plane.
Clearly, the intensity distribution patterns of these beams

Fig. 1. (a)–(c) Normalized intensity distribution of the RLG
beam at different transverse sections (x/λ, y/λ). (d)–(f) Ap-
proximated version of the intensity distribution by means of
Hermite-Gaussian functions (x/λ, y/λ). Simulation is per-
formed for λ = 1 µm and ω = 20 µm. All the graphs cover
the range [–40,40]×[–40,40].

at the z = zR plane, as well as at the z = 2zR plane, are
the same. Roughly speaking, the superposition of the
even-order Hermite-Gaussian beams can stand for the
RLG beam, not only at the original plane, but also at
the arbitrary section on propagation in and beyond the
Rayleigh distance.

In the Cartesian coordinate system, the beam is as-
sumed to be generated by a higher-order point source
with the intensity of Sex situated at z = zex. We also
assume that the proper choice of Sex and zex yields the
desired LG beams in the physical space z > 0. The wave
function satisfies the inhomogeneous Helmholtz equation

(∇2 + k2)RLG(x, y, z) = −SexTmn(∂2
x, ∂2

y)δ(x)δ(y)

· δ(z − zex), (5)

Tmn(∂2
x, ∂2

y) =
∞∑

m=0

∞∑
n=0

∂2m
x ∂2n

y , (6)

where ∇2 = ∂2
x + ∂2

y + ∂2
z with ∂r = ∂/∂r (r = x, y, z).

Applying the Fourier transform pairs,

RLG (x, y, z) =
∫∫

∞
R̃LG(px, py, z)

· exp[−i2π(pxx + pyy)]dpxdpy, (7)

R̃LG(px, py, z) =
∫∫

∞
RLG(x, y, z)

· exp[i2π(pxx + pyy)]dxdy, (8)

where px and py are spatial frequencies in the x and
y directions, respectively, and the spatial frequency is
p = (p2

x + p2
y)1/2. From Eq. (8), R̃LG(px, py, z) is de-

termined. When the solution of R̃LG(px, py, z) is substi-
tuted into Eq. (7), we obtain

RLG(x, y, z) =
∫∫

∞

∞∑
m=0

∞∑
n=0

iSex

2ζ
exp[iζ(z − zex)]

· exp[−2πi(xpx + ypy)](−2πipx)2m(−2πipy)2ndpxdpy,
(9)

for Re(z−zex) > 0, where ζ = [k2−4π2(p2
x+p2

y)]1/2. The
integral of Eq. (9) is rearranged to extend from −∞ to
+∞, and the domains of px and py are extended to com-
plex values. Here, R̃LG(px, py, z) is an analytic function
of complex variable 4π2(p2

x + p2
y). This radiation condi-

tion is used to select the appropriate branch of ζ.
To obtain a nearly planar wave, we evaluate the integral

in Eq. (9) asymptotically. If 4π2(p2
x + p2

y) corresponding
to the saddle point is smaller than k2, we expand ζ for
small 4π2(p2

x + p2
y) and retain the leading term for the

amplitude factor and the first two terms for the phase
factor. Expanding ζ into a series and keeping the first
and second terms, we obtain ζ ≈ k(1−2π2p2/k2). Under
paraxial approximation 4π2(p2

x + p2
y) ¿ k2, we replace ζ

of the phase factor in Eq. (4) with the first two terms
and the amplitude factor with the leading term k. The

062601-2



COL 10(6), 062601(2012) CHINESE OPTICS LETTERS June 10, 2012

integrals in Eq. (4) can be evaluated as

RLG(x, y, z) =
i exp[ik(z − zex)]

2k

∫∫

∞

∞∑
m=0

∞∑
n=0

Sex

· exp[−2πi(xpx + ypy)](−2πipx)2m(−2πipy)2n

· exp
[
−i

2π2

k
(p2

x + p2
y)(z − zex)

]
dpxdpy, (10)

RLG(x, y, z) = exp(ikz)
∞∑

m=0

∞∑
n=0

∂2m
x ∂2n

y

·
{

Sex exp(−ikzex)
4π(z − zex)

exp
[
ik(x2 + y2)
2(z − zex)

]}
. (11)

In order to generate the RLG beam for z > 0, the input
distribution is given by Eq. (4) for boundary condition
z = 0. Because the Hermite Gaussian function is

Hm(υ) = (−1)m exp(υ2)(dm/dυm)[exp(−υ2)], (12)

by comparing Eqs. (4) and (11) under the boundary
condition and applying Eq. (12), the parameters zex and
Sex are determined by the requirement that RLG(x, y, z)
given by Eq. (11) for z = 0 is reduced to RLG(x, y, 0) in
Eq. (4). The result yields

zex = i
kω2

2
= ib, (13)

Sex = −2Aπ2ib exp(−kb)
∞∑

m=0

∞∑
n=0

a2ma2nω4(m+n)−2.

(14)

Then, Eq. (11) will be the paraxial RLG beam

RLG(x, y, z)=
Aπ

2ω2
exp(ikz)

∞∑
m=0

∞∑
n=0

a2ma2nq(z)4(m+n)+2

·H2m

[
q(z)
ω

x

]
H2n

[
q(z)
ω

y

]
exp

[
−q2(z)

ω2
(x2 + y2)

]
,

(15)

with
q2(z) = (1 + iz/b)−1. (16)

As the above equations show, to a given beam width ω,
a group of corresponding even-order Hermite-Gaussian
beams will compose the LG beam. That is to say, the
RLG beam expressed in Eq. (4) can be regarded as
the sum of even-order Hermite-Gaussian beams with the
same beam width ω.

By applying Eqs. (13) and (14), one can also obtain the
exact solution of the inhomogeneous Helmholtz equation
in the integral representation from Eq. (9):

RLG(x, y, z) = Aπ2bω4(m+n)−2
exp(−kb)

∞∑
m=0

∞∑
n=0

a2ma2n

·
∫∫

∞

exp[iζ(z − ib)]
ζ

exp[−2πi(xpx + ypy)]

· (−2πpx)2m(−2πpy)2ndpxdpy. (17)

The integral representation for the RLG wave is given
by Eq. (17). The wave function representing the cor-
responding paraxial RLG beam is given by Eq. (15).
For z > 0, the solution given by Eq. (17) is the exact
solution to the homogeneous equation corresponding to
Eq. (5). This exact solution yields the correct paraxial
approximation in the appropriate limit that excludes all
the nonparaxial contributions, as well as the evanescent
waves. All the contributions can be summed up by eval-
uated the integral in Eq. (17).

By applying the Green-function approach, the
differential representation of a RLG wave can be deter-
mined. The solution of the differential equation

(∇2 + k2)G(r, z) = −Sexδ(x)δ(y)δ(z − zex), (18)

is given by

G(r, z) = Sex exp(ikR)4πR, (19)

where R = [x2 + y2 + (z− ib)2]1/2. In applying the oper-
ator

T̂ = Tmn(∂2
x, ∂2

y) (20)

from the left in both sides of the Eq. (19) and using
Eq. (14), when the result is compared with Eq. (5), the
differential or multipole representation of the RLG beam
is found to be

RLG(x, y, z) = − Aπ

2
ib exp(−kb)Tmn(∂2

x, ∂2
y)ω4(m+n)−2

· a2ma2n

[
exp(ikR)

R

]
. (21)

From Eq. (21), we can see that this uniquely shaped
LG beam can be generated by applying the opera-
tor in Eq. (20) to the complex-source-point spherical
wave Sex exp(ikR)/4πR that corresponds to the paraxial
Gaussian beam. When comparing the differential rep-
resentation of RLG beam with the corresponding rep-
resentation of Hermite-Gaussian beam (in Ref. [20]),
we can see that the main difference is their operators.
One applies the operator ∂m

x ∂n
y to the complex-source-

point spherical wave to generate Hermite-Gaussian beam,

whereas the other uses
∞∑

m=0

∞∑
n=0

∂2m
x ∂2n

y to realize the

RLG beam. Clearly, the RLG beam can be described
as the infinity of even-order Hermite-Gaussian beams, as
proven in Eq. (15). However, we can select appropriate
adjustable parameters in adjustable functions a2m and
a2n to obtain a limited number of terms used in the ex-
pansion in practice.

In order to obtain the nonparaxial corrections of the
RLG beam, we can perform the series expansion of 1/ζ
and exp[iζ(z − zd)] in Eq. (17) by using the perturba-
tive series method. The product of both series terms up
to order (kω)−2j are retained and we can obtain the jth
order corrections. By this expansion operation, the first
three nonparaxial corrections of RLG beam for j = 3 can
be represented as

RLG(x, y, z) =
Aπ2

2
exp(ikz)

∞∑
m=0

∞∑
n=0

a2ma2nω4(m+n)
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·
∫∫

∞
exp

[
− i2π2p2

k
(z − ibt)

]
G(2πp, z)(−2πipx)2m

· (−2πipy)2n exp[−2πi(xpx + ypy)]dpxdpy, (22)

where

G(ξ, z) = 1 + k−2G2(ξ, z) + k−4G4(ξ, z)

+ k−6G6(ξ, z), (23)

G2(ξ, z) = a21ξ
2 − a22ω

2 ξ4

q2(z)
, (24)

G4(ξ, z) = a42ξ
4 − a43ω

2 ξ6

q2(z)
+ a44ω

4 ξ8

q4(z)
, (25)

G6(ξ, z) = a63ξ
6 − a64ω

2 ξ8

q2(z)
+ a65ω

4 ξ10

q4(z)

− a66ω
6 ξ12

q6(z)
, (26)

where a21 = 1/2, a22 = 1/16, a42 = 3/8, a43 = 1/16,
a44 = 1/512, a63 = 5/16, a64 = 15/256, a65 = 3/1 024,
and a66 = 1/(6 × 4 096). Together with Eqs. (23)–(26),
after we define a dimensionless perturbation parameter
σ = 1/(kω), the integral in Eq. (22) can be evaluated as
the nonparaxial RLG beam accurate to any order σ2.

RLG(x, y, z) =
Aπ

2ω2
exp(ikz)

∞∑
m=0

∞∑
n=0

a2ma2n

· [q(z)]4(m+n)+2 exp
[
−q2(z)

ω2
(x2 + y2)

]

·
3∑

j=0

σ−2j(−1)jq2j(z)f (2j)
m,n(x, y, z), (27)

where

f (2j)
m,n(x, y, z) =

2j∑

t=j

a2j,t

t∑

l=0

t!
l!(t− l)!

H2m+2(t−l)

·
[
q(z)
ω

x

]
H2n+2l

[
q(z)
ω

y

]
. (28)

Equation (27) represents the nonparaxial expression of
the RLG beam taking up to the first three nonparax-
ial corrections. The above expression indicates that the
RLG beam can be described as a superposition of even-
order Hermite-Gaussian beams. Clearly, the nonparaxial
solution approaches the exact solution as the parameter
j increases. Specifically, when the parameter j becomes
infinite, the nonparaxial solution becomes the exact so-
lution.

Figure 2 shows the normalized intensity distribution
respectively associated with the paraxial RLG beam, the
nonparaxial correction solution of the RLG beam, and
the corresponding exact solution of the RLG wave at the
given plane. The dimensionless perturbation parameter
of the simulation is σ = 0.5. Figure 2 shows that the
second-order correction solution is closer to the exact so-
lution than the first-order correction solution at different
transverse plane. The paraxial solution, the nonparaxial

Fig. 2. Comparison of the normalized intensity distribution
respectively associated with the paraxial RLG beam (dotted-
dashed curve), the first-order (dashed curve) and the second-
order (dotted curve) nonparaxial corrections of RLG beam,
and the corresponding exact solution of the RLG wave (solid
curve) at the given planes. The parameters are λ = 1 µm and
σ = 0.5.

correction solution, and the exact solution have more ob-
vious discrepancies when the propagation distance is in-
creased because the beam expands the paraxial approxi-
mation.

In conclusion, a complex virtual source required for
generation of the RLG beam is presented on the basis of
the superposition of beams. The relation between RLG
beam and Hermite-Gaussian beam is revealed. We ob-
tain the integral and the differential representations for
the RLG beam. From the integral representation of RLG,
we derive the first three orders of nonparaxial corrections
for the corresponding paraxial RLG beam. Comparisons
of the normalized intensity distribution associated with
the paraxial RLG beam, the first two nonparaxial cor-
rections of RLG beam, and the exact RLG wave at the
given planes are presented numerically.
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